Getting Models into Unreal

Mike Fox
Mfox@legendent.com

Legend Entertainment Company

703-968-5241
Last Update: 28 Oct 98
3ds2unr v 1.15
Issues For Artists

Modeling

Models must be made up of a single 3D Studio object, which lives within the 256x256x256 coordinate space centered on the origin. (Setting the grid extents to –128..128 and turning on the grid is helpful here.) The model itself should be centered on the origin (0,0,0) because of how Unreal specifies the collision cylinders used to determine when objects are touching.

Models will lose some precision when imported. Specifically, X and Y coordinates are truncated to the nearest 1/8th (0.125) unit, and Z coordinates are truncated to the nearest 1/4th (0.25) unit.

One 3DS coordinate equals 6” in Unreal X and Y coordinates, or 12” in Unreal Z coordinates. You generally don’t have to worry about this scaling, as the model can be rescaled when it’s imported into Unreal.

Object polygons shouldn’t intersect. The hardware supported by Unreal gets confused when polygons intersect, resulting in an unpleasant shimmering.

If your object is a character that will be carrying a weapon that will be separately modeled, place an extra polygon (the weapon triangle) in or on the part of the character where the weapon should be. This polygon will be invisible in the game; it’s just used to sync the weapon’s position with the character’s animation.

The conversion tool will only convert objects with sequence numbers in their names (Obj01, Obj02, ...). The object name itself is meaningless; it’s the sequence numbers that count. They must begin at 01 (even if that’s the only frame!) and you can’t have any “holes” in the sequence. (Under 3D Studio 4, it was easiest to use the “Snapshot” option; I’m not sure how 3DS MAX handles this.)
Objects that won’t be animated (e.g. 3rd person weapon views) should be in their own .3DS file (e.g. save the angreal of healing as AngrealHeal.3DS).

Animation

Make sure that all animation frames stay entirely within the 256x256x256 coordinate space.

The Unreal animators are typically designing their animations for 30-35 fps playback. Then, to save memory, they shave the animations down to 15-17 fps and let Unreal do the tweening.

Objects that are animated should have a separate .3DS file for each animation sequence (Run.3DS, Walk.3DS, Shoot.3DS, etc.). You probably want a separate directory for each animating character, so that each can have it’s own Run.3DS sequence.

Texture Mapping

You still use 3D Studio to do your texture mapping. However, there are some (pretty heavy) restrictions on what will actually show up in Unreal.

The only type of texturing that has any effect is using actual texture maps – bump maps, opacity maps, specular maps, etc. are meaningless. Furthermore, the bitmaps that you use as textures should be 256x256 pixels in size, and you can’t have more than ten of them for any one model. To conserve memory, you should use as few texture maps as possible. 3DS Max V2 allows you to map part of a material to your geometry; using this feature lets you squeeze many smaller texture maps together into one big bitmap.

Our Wheel of Time characters currently use two texture maps. The angreal use only one.

Under most circumstances, the material names that you use in 3D Studio don’t matter. However, there are several pre-defined material names that you can use to get special effects when the model is imported into Unreal. The predefined names are divided into Base Names (anything that appears before a period in the material name) and Flags (anything that appears after a period in the material name).
There is only one predefined Base Name:
SKIN
This texture will be assigned as the Skin property of the class in Unreal. Skin textures can be replaced easily at runtime (to show increasing damage, for example) and are the basis for Unreal’s corona effects.

There are several predefined Flags:
TRANSLUCENT
The polygons mapped with this texture will be marked as translucent, and can have their transparency set programmatically. Wheel of Time uses this to get the transparent globe on the Shield angreal. In the Unreal engine, translucent polygons are also two-sided.

TWOSIDED
The polygons mapped with this texture will be marked as two-sided, so the texture mapping will show up on both sides of the polygon. Wheel of Time uses this for the characters’ cloaks.

MASKED
The polygons mapped with this texture will be marked as masked, meaning that areas mapped with color zero from the material’s palette will be transparent. In the Unreal engine, masked polygons are also two-sided.

WEAPON
The polygon (there should be only one!) mapped with this texture will be marked as the weapon triangle. A weapon triangle is never rendered; it’s used only for orienting the actor’s weapon.

For example, you can name a material CLOAK.MASKED to make all polygons mapped using that material masked when imported into Unreal.
You can combine a predefined Base Name with a Flag (e.g. SKIN.TRANSLUCENT).
The converter also uses the Base Names as a mechanism for conserving bitmaps in Unreal. The converter assumes that all material names that have the same Base Name are using the same bitmap for texturing. This allows you to use more than ten 3D Studio materials without using more than ten Unreal texture maps (which the engine can’t handle).
For example, you might have a single bitmap containing textures for a character’s head, torso, and arms. For texture mapping convenience in 3D Studio, you may want to create three different materials. But since the different materials are using the same bitmap, you can name them UPPER.HEAD, UPPER.TORSO, and UPPER.ARMS. The converter will see that all three materials have the same Base Name (UPPER), and will “coagulate” them into one Unreal texture map. If you named the materials HEAD, TORSO, and ARMS, you’d get three Unreal texture maps instead.
Note that these naming conventions apply to the material name itself; the filename of whatever TGA file you use as the bitmap is irrelevant. Also, note that the converter is case-sensitive, and so treats TORSO, Torso, and torso as three unique names. The predefined Base Names and Flags are all uppercase.
Avoiding Problems with Cylindrical Coordinate Mapping

The converter sometimes has troubles dealing with cylindrical coordinate mapping. The problem occurs in places where the seam of the cylinder used to apply the mapping lines overlaps polygons that are about to be mapped:

This results in the given polygons having texture mapping coordinates that run off the edge of the bitmap and “wrap around” to the other side, as in the following view of the unwrapped cylinder:

3D Studio can handle this, but Unreal can’t, so the polygon will be rendered incorrectly.

There is, unfortunately, no easy way around this. If you are mapping polygons that aren’t themselves connected cylindrically (in other words, if the polygons viewed from the top make a “U” or a “C” shape rather than an “O”), you can line up the mapping seam on the gap between the polygons. If that’s not possible, you’ll have to touch up the polygons by hand in 3D Studio.
Converting to Unreal Format

Preparation

You’ll need a copy of the 3ds2unr.exe conversion program, plus some way (Photoshop, Debabylizer, etc.) of converting TGA files to PCX format. A text editor (Notepad will do in a pinch) is also handy.

The conversion program expects an Unreal-like directory structure to exist before it will run. Specifically, you need:

1. a main Unreal directory (mine is c:\Unreal), below which is a

2. project-specific directory (for example, c:\Unreal\WOT), below which are

3. two directories, Models and Classes (e.g. c:\Unreal\WOT\Models and c:\Unreal\WOT\Classes)

This directory tree is what Unreal itself expects, so it may already be set up. If it isn’t, you’ll have to make it yourself before doing any conversions.

The converter is a Windows console application, meaning it runs by typing rather than pointing and clicking. Make sure that the 3ds2unr.exe program is somewhere in your DOS path before you begin.

Using the Converter

Once you’re set up, using the converter is pretty simple. Just type 3ds2unr, followed by an optional class name and one or more .3DS files, like so:

C:\>3ds2unr Trolloc Walk.3ds Run.3ds Attack.3ds

The converter reads the given 3DS files, and produces a class file (Trolloc.uc) and model files (Trolloc_a.3d and Trolloc_d.3d) to be used by Unreal.

If this is the first time that you’ve run the converter, you’ll be prompted to select your project directory (i.e. the directory from item #2 in the preparation list (for me, c:\Unreal\WOT). Once you’ve set this directory, you won’t need to set it again. If you do need to change it, because you’ve began a new project, just type

C:\>3ds2unr –setproj

and you’ll be able to select another project directory.

When specifying 3DS files, you can use standard DOS wildcard characters (`?' and `*'). So, if all of those Trolloc animation sequences were the only 3DS files in the current directory, you could type:

C:\>3ds2unr Trolloc *.3ds

The class name is just the name of the object that you’re converting (Trolloc, AngrealHealing, Myrddraal, etc.) and is used as the base filename for the converter’s output. If you’re converting an object with no animation, you can omit the class name, in which case the base name of the sole 3DS file is used as the class name. In other words, this:

C:\>3ds2unr AngrealHeal.3ds

does what you probably want it to. However, if you try to convert more than one 3DS file at a time without supplying a class name, you'll be prompted to make sure that the class name inferred by the converter is correct. For example, omitting the "Trolloc" from the previous example is probably an error:

c:>3ds2unr *.3ds

ClassName [Walk]?

You can just hit Enter to continue with that name, or type the correct name (Trolloc) first.

Be careful with your class names – the converter will happily overwrite existing files.
October 28th, 1998: New switches added. These are all optional.

-b BaseName

Will derive ClassName from BaseName (e.g. WOTPlayer) instead of default “Actor” superclass.

-p

Pause after completion. E.g. before closing a console window automatically.

-q

Quiet mode. Removes the bad coordinate warnings. There are still quite a few of these even for seemingly valid 3DS files, so this switch can be handy. Make sure that you don’t obscure real problems though!

-y

The latest version of 3ds2unr adjusts the yaw of the model so that the “front” of the model is generally correct in Unreal/UnrealEd. Use this switch to restore the old behaviour. This will probably make it more likely that YAW= etc. commands will he needed in the .uc file to “fix” the model’s orientation.

Other changes to version 1.17:

Fixed (old) bug which caused left and right sides of models to be reversed.

Animations are now sorted by name in the .uc and .3d files.

Fixed missing fclose problem which could limit max # .3ds input files.
Converter Output

The converter will create three files:

1. ...\Models\ClassName_a.3d

2. ...\Models\ClassName_d.3d

3. ...\Classes\ClassName.uc

(where "..." is your project directory).

The .uc file will contain the appropriate UnrealScript commands to import your model, list its animation sequences, and set its textures.

Unreal needs all three files to use your model. The same three files are used by the Mesh Viewer (see below, and separate documentation) to view models.

Fixing Texture Maps

Since the converter doesn’t read 3DS materials files, and Unreal requires PCX rather than TGA-format input, you have to manually help out the converter.

First, you need 8-bit PCX versions of all of the textures that you used in the model – use Photoshop, etc.

You then need to examine the .uc file in a text editor that can handle straight ASCII text – Notepad is fine. Look for the lines that begin with #exec TEXTURE IMPORT and note that each such line ends with a material name after a pair of slashes:

#exec TEXTURE IMPORT NAME=JSpider1 FILE=MODELS\Spider1.PCX GROUP=Skins FLAGS=2 // SpiderSkin

(The above should be a single line, but can’t be shown here legibly that way.)

Notice the reference to a Spider1.PCX file. Both Unreal and MeshViewer will need this file to properly display your model. It corresponds to whatever TGA file you used in the given material, SpiderSkin. You need to have this file name match the name of the material’s 8-bit PCX file, which you can do by either editing the .uc file directly, or renaming your PCX file to correspond with the name in the .uc file.

Using the above example, say that the SpiderSkin material was made with a SpiderSkin.TGA texture map. You’d convert that TGA file to and 8-bit SpiderSkin.PCX file. You could then either rename that file to Spider1.PCX (because that’s what the script is expecting), or edit the script to look for SpiderSkin.PCX instead of Spider1.PCX.

Conversion Errors and Warnings

You might encounter the following problems when converting:

can't find file

You referred to a file that doesn’t exist. Make sure you’ve typed the name and directory correctly.

No project directory found – exiting

The converter couldn’t establish a project directory, either because you cancelled out or there’s a problem in the system registry. Make sure that your project directory structure is correct, then try rerunning the converter with the –setproj option before attempting conversion again. The converter cannot run without a project directory.

read error [TAG]

The converter was expecting data that wasn’t there. This probably means the 3DS file is corrupted.

too many textures

Unreal has a limit of ten materials that can be applied to an object, and the converter encountered an eleventh material. For memory and rendering performance reasons, you really should be using less than ten anyway.

warning: pgon [X0,Y0,Z0] [X1,Y1,Z1] [X2,Y2,Z2]: [U,V] > 1.0

The polygon at the given coordinates has texture map coordinates that are greater than 1.0. I’m not sure why this happens; it may have something to do with scaling and/or rotating texture maps in 3DS. The converter will happily chop off the integer part of the coordinates (i.e. 1.02 becomes 0.02), but this probably isn’t what you want. You’ll need to go back into 3DS and remap those polygons.

warning: pgon [X0,Y0,Z0] [X1,Y1,Z1] [X2,Y2,Z2]: wrapped texture

The polygon at the given coordinates has texture map coordinates that “wrap around” the edges of the bitmap. This typically occurs on the polygons along the seam of the mapping cylinder used when you apply cylindrical mapping to an object. The converter will readjust the coordinates so that the map coordinates are entirely within the bitmap, but this probably isn’t what you want. You’ll need to go back into 3DS and remap those polygons.
warning: out of sequence obj (Foo) skipped

The converter expects to find sequentially numbered objects in file, and it found an object either without a sequence number (e.g. Box instead of Box01) or with an out-of-sequence number (e.g. Box01, Box02, Box04). This is probably something you want to fix, although in some cases, like leaving a stray light source in the project, it might be OK to ignore (providing that the correct object was converted).

warning: Filename.3DS: Bad coordinate x.xxxxx, y.yyyyy, z.zzzzz

The converter found a coordinate that was outside the allowable 256x256x256 coordinate space. Rescale your model or fix the animation sequence. To minimize warning lines, only one bad coordinate is reported per object in the file.

If you encounter errors other than those listed here, it probably indicates a converter bug.

Mapping cylinder

Seam

Polygons being mapped

A

B

C

B

C

A

ImportingModels.doc
10/28/98
Page 1

